Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Med Rep ; 17(5): 6661-6666, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29512745

RESUMO

Our previous studies revealed that REIC/Dkk-3 was expressed various tissues, including skin keratinocytes. The aim of the present study was to identify the factors that regulate the expression of the dickkopf Wnt signaling pathway inhibitor 3 (REIC/Dkk­3) tumor suppressor gene in normal human skin keratinocytes (NHKs). Several growth factors and cytokines that have previously been reported to be involved in the growth and differentiation of keratinocytes were screened as potential regulators. Western blot analysis was performed using protein from NHKs cultured with/without various factors including the epidermal growth factor, tumor necrosis factor­α, transforming growth factor­ß, interleukin (IL)­1F9, IL­6, IL­8 and Ca2+. The results indicated that only TNF­α downregulated REIC/Dkk­3 expression in NHKs. Subsequently, TNF­α was confirmed to reduce the expression levels of REIC/Dkk­3 in mouse skin tissue and hair culture models. TNF­α­mediated downregulation of REIC/Dkk­3 expression in NHKs was abrogated by the addition of a TNF­α­specific antibody. In conclusion, the results indicate that TNF­α downregulates REIC/Dkk­3 expression in normal skin keratinocytes.


Assuntos
Regulação para Baixo , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Queratinócitos/metabolismo , Pele/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Supressoras de Tumor/biossíntese , Proteínas Adaptadoras de Transdução de Sinal , Animais , Quimiocinas , Feminino , Humanos , Queratinócitos/citologia , Masculino , Camundongos , Pele/citologia
2.
Oncol Lett ; 14(1): 1041-1048, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28693271

RESUMO

Reduced expression in immortalized cells (REIC)/Dickkopf-3 (Dkk-3) overexpression, induced using an adenovirus (Ad)-REIC, has been revealed to have a dramatic therapeutic effect on multiple types of cancer. To achieve an improved therapeutic effect from Ad-REIC on cancer, our group previously developed an enhanced gene expression system, the C-TSC cassette [cytomegalovirus (CMV)-RU5' located upstream (C); another promoter unit composed of triple tandem promoters, human telomerase reverse transcriptase (hTERT), simian virus 40 and CMV, located downstream of the cDNA (TSC); plus a polyadenylation (polyA) signal]. When applied to the conventional Ad-REIC, this novel system induced the development of an enhanced product, Ad-C-TSC-REIC, which exhibited a noticeable anticancer effect. However, there were difficulties in terms of Ad-C-TSC-REIC productivity in HEK293 cells, which are a widely used donor cell line for viral production. Productivity of Ad-C-TSC-REIC was significantly reduced compared with the conventional Ad-REIC, as the Ad-C-TSC-REIC had a significantly higher ability to induce apoptotic cell death of not only various types of cancer cell, but also HEK293 cells. The present study aimed to overcome this problem by modifying the C-TSC structure, resulting in an improved candidate: A C-T cassette (C: CMV-RU5' located upstream; T: another promoter unit composed of a single hTERT promoter, located downstream of the cDNA plus a polyA signal), which demonstrated gene expression comparable to that of the C-TSC system. The improved adenovirus REIC/Dkk-3 product with the C-T cassette, named Ad-C-T-REIC, exhibited a higher expression level of REIC/Dkk3, similar to that of Ad-C-TSC-REIC. Notably, the vector mitigated the cell death of donor HEK293 cells, resulting in a higher rate of production of its adenovirus. These results indicated that Ad-C-T-REIC has the potential to be a useful tool for application in cancer gene therapy.

3.
Oncol Rep ; 38(2): 1108-1114, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28627633

RESUMO

We developed and validated a novel hTERT/CMV promoter element-driven gene expression cassette that can robustly enhance cancer-specific gene expression. The following gene expressional elements were located in tandem within the plasmid construct: [hTERT core promoter, cytomegalovirus (CMV) minimized promoter, RU5' sequence, an inserted gene, BGH polyA, hTERT enhancer]; this is hereafter referred to as the hT/Cm-R-hT construct. Using various human cancer cell lines and normal cells, the cancer-specific transcription of the green fluorescent protein (GFP) gene was examined by western blotting and fluorescence microscopy. Cancer-specific gene expression was robustly achieved in the hT/Cm-R-hT plasmid in comparison to the other control hT/Cm-driven construct. Notably, the expression level of GFP observed in the hT/Cm-R-hT-driven construct was superior to that of the control plasmid with the conventional CMV promoter in HEK293 cells, which are known to possess higher hTERT activity than normal cells. We next examined the availability of hT/Cm-R-hT in detecting the target GFP expressing cancer cells from human peripheral blood mononuclear cells (PBMCs). The hT/Cm-R-hT plasmid successfully induced cancer-specific gene expression; the robust expression of GFP was observed in target HeLa cancer cells, whereas GFP was not visibly expressed in normal PBMCs. The plasmid allowed for the selective visualization of viable HeLa cancer cells in mixed cell cultures containing up to 10000-fold more PBMCs. These findings indicate that the hT/Cm-R-hT expressional system is a valuable tool for detecting viable cancer cells mixed with normal cells. The current system can therefore be applied to the in vitro detection of cancer cells that are disseminated in the blood and other types of body fluid in vivo. Since the current system can also be applied to other types of vectors, including virus vectors, this approach using the hTERT promoter-based construct is expected to become a valuable tool for enhancing cancer-specific gene expression.


Assuntos
Citomegalovirus/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Leucócitos Mononucleares/metabolismo , Neoplasias/metabolismo , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Telomerase/genética , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Humanos , Neoplasias/genética , Neoplasias/patologia , Células Tumorais Cultivadas
4.
J Invest Dermatol ; 136(11): 2240-2250, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27388991

RESUMO

We previously reported a positive feedback loop between S100A8/A9 and proinflammatory cytokines mediated by extracellular matrix metalloproteinase inducer, an S100A9 receptor. Here, we identify neuroplastin-ß as an unreported S100A8 receptor. Neuroplastin-ß and extracellular matrix metalloproteinase inducer form homodimers and a heterodimer, and they are co-localized on the surface of cultured normal human keratinocytes. Knockdown of both receptors suppressed cell proliferation and proinflammatory cytokine induction. Upon stimulation with S100A8, neuroplastin-ß recruited GRB2 and activated extracellular signal-regulated kinase, resulting in keratinocyte proliferation. Keratinocyte proliferation in response to inflammatory stimuli was accelerated in involucrin promoter-driven S100A8 transgenic mice. Further, S100A8 and S100A9 were strongly up-regulated and co-localized in lesional skin of atopic dermatitis patients. Our results indicate that neuroplastin-ß and extracellular matrix metalloproteinase inducer form a functional heterodimeric receptor for S100A8/A9 heterodimer, followed by recruitment of specific adaptor molecules GRB2 and TRAF2, and this signaling pathway is involved in activation of both keratinocyte proliferation and skin inflammation in atopic skin. Suppression of this pathway might have potential for treatment of skin diseases associated with chronic inflammation such as atopic dermatitis.


Assuntos
Basigina/metabolismo , Calgranulina A/biossíntese , Dermatite Atópica/metabolismo , Glicoproteínas de Membrana/biossíntese , Regulação para Cima , Animais , Basigina/genética , Calgranulina A/genética , Proliferação de Células , Células Cultivadas , Dermatite Atópica/genética , Dermatite Atópica/patologia , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Queratinócitos/metabolismo , Queratinócitos/patologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Transdução de Sinais
5.
Cancer Microenviron ; 9(2-3): 93-105, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27334300

RESUMO

S100A11, a small Ca2+ binding protein, acts extracellularly as a mediator of cancer progression. That raises the question of how a protein that lacks the classical secretory signal is able to be secreted outside cells without being damaged. Some insights into this question have been obtained, and there has been accumulating evidence indicating a pivotal role of a non-classical vesicle-mediated pathway using lysosomes or peroxisomes for the protein secretion. To obtain a more precise insight into the secretory mechanism of S100A11, we first screened representative cancer cells exhibiting significantly active secretion of S100A11. From the results of profiling, we turned our attention to aggressive cancer mesothelioma cells. In mesothelioma cells, we found that abundant dimeric S100A11 was produced selectively in the peroxisome after transportation of monomeric S100A11 through an interaction with PEX14, a peroxisome membrane protein, resulting in peroxisomal secretion of dimerized S100A11. In an extracellular environment in vitro, dimerized S100A11 promoted mesothelial cell invasion indirectly with the help of fibroblast cells. Overall, the results indicate that the peroxisome functions as an essential vesicle for the production of dimerized S100A11 and the subsequent secretion of the protein from mesothelioma cells and that peroxisome-mediated secretion of dimerized S100A11 might play a critical role in mesothelioma progression in a tumor microenvironment.

6.
PLoS One ; 10(11): e0142438, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26555609

RESUMO

Mutations of the PTEN-induced putative kinase 1 (PINK1) gene are a cause of autosomal recessive forms of Parkinson's disease. Recent studies have revealed that PINK1 is an essential factor for controlling mitochondrial quality, and that it protects cells from oxidative stresses. Although there has been considerable progress in the elucidation of various aspects of PINK1 protein regulation such as activation, stability and degradation, the transcriptional regulation of PINK1 mRNA under stress conditions remains unclear. In this study, we found that nuclear factor (erythroid-derived 2)-like 2 (NRF2), an antioxidant transcription factor, regulates PINK1 expression under oxidative stress conditions. Damaged mitochondria arising from stress conditions induced NRF2-dependent transcription of the PINK1 gene through production of reactive oxygen species (ROS). Either an ROS scavenger or forced expression of KEAP1, a potent inhibitory partner to NRF2, restricted PINK1 expression induced by activated NRF2. Transcriptionally up-regulated PINK1 diminished oxidative stress-associated cell death. The results indicate that PINK1 expression is positively regulated by NRF2 and that the NRF2-PINK1 signaling axis is deeply involved in cell survival.


Assuntos
Fator 2 Relacionado a NF-E2/fisiologia , Estresse Oxidativo , Proteínas Quinases/genética , Linhagem Celular , Humanos , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Transcrição Gênica , Regulação para Cima
7.
J Biol Chem ; 289(34): 23389-402, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002577

RESUMO

The receptor for advanced glycation end products (RAGE) is involved in the pathogenesis of many inflammatory, degenerative, and hyperproliferative diseases, including cancer. Previously, we revealed mechanisms of downstream signaling from ligand-activated RAGE, which recruits TIRAP/MyD88. Here, we showed that DNAX-activating protein 10 (DAP10), a transmembrane adaptor protein, also binds to RAGE. By artificial oligomerization of RAGE alone or RAGE-DAP10, we found that RAGE-DAP10 heterodimer formation resulted in a marked enhancement of Akt activation, whereas homomultimeric interaction of RAGE led to activation of caspase 8. Normal human epidermal keratinocytes exposed to S100A8/A9, a ligand for RAGE, at a nanomolar concentration mimicked the pro-survival response of RAGE-DAP10 interaction, although at a micromolar concentration, the cells mimicked the pro-apoptotic response of RAGE-RAGE. In transformed epithelial cell lines, A431 and HaCaT, in which endogenous DAP10 was overexpressed, and S100A8/A9, even at a micromolar concentration, led to cell growth and survival due to RAGE-DAP10 interaction. Functional blocking of DAP10 in the cell lines abrogated the Akt phosphorylation from S100A8/A9-activated RAGE, eventually leading to an increase in apoptosis. Finally, S100A8/A9, RAGE, and DAP10 were overexpressed in the psoriatic epidermis. Our findings indicate that the functional interaction between RAGE and DAP10 coordinately regulates S100A8/A9-mediated survival and/or apoptotic response of keratinocytes.


Assuntos
Queratinócitos/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Células Cultivadas , Humanos , Células Matadoras Naturais/imunologia , Psoríase/metabolismo , Interferência de RNA , Receptor para Produtos Finais de Glicação Avançada
8.
Mol Biotechnol ; 56(7): 621-30, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24526517

RESUMO

For expression of genes in mammalian cells, various vectors have been developed using promoters including CMV, EF-1α, and CAG promoters and have been widely used. However, such expression vectors sometimes fail to attain sufficient expression levels depending on the nature of cargo genes and/or on host cell types. In the present study, we aimed to develop a potent promoter system that enables high expression levels of cargo genes ubiquitously in many different cell types. We found that insertion of an additional promoter downstream of a cargo gene greatly enhanced the expression levels. Among the constructs we tested, C-TSC cassette (C: CMV-RU5' located upstream; TSC: another promoter unit composed of triple tandem promoters, hTERT, SV40, and CMV, located downstream of the cDNA plus a polyadenylation signal) had the most potent capability, showing far higher efficiency than that of potent conventional vector systems. The results indicate that the new expression system is useful for production of recombinant proteins in mammalian cells and for application as a gene therapeutic measure.


Assuntos
Vetores Genéticos , Regiões Promotoras Genéticas , Telomerase/biossíntese , Animais , Regulação da Expressão Gênica , Humanos , Telomerase/genética , Transgenes
9.
PLoS One ; 9(2): e87900, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498395

RESUMO

OBJECTIVES: REIC/Dkk-3 is down-regulated in a broad range of human cancer cells and is considered to function as a tumor suppressor. We previously reported that REIC/Dkk-3-expressing adenovirus vector (Ad-REIC) induced endoplasmic reticulum (ER) stress and cancer-specific apoptosis in human prostate cancer. In this study, we examined the therapeutic impact of Ad-REIC on non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: We examined the anti-tumor effect of Ad-REIC on 25 NSCLC cell lines in vitro and A549 cells in vivo. Two of these cell lines were artificially established as EGFR-tyrosine kinase inhibitor (TKI) resistant sublines. RESULTS: Ad-REIC-treatment inhibited the cell viability by 40% or more in 13 (52%) of the 25 cell lines at multiplicity of infection (MOI) of 20 (20 MOI). These cell lines were regarded as being highly sensitive cells. The cell viability of a non-malignant immortalized cell line, OUMS-24, was not inhibited at 200 MOI of Ad-REIC. The effects of Ad-REIC on EGFR-TKI resistant sublines were equivalent to those in the parental cell lines. Here, we demonstrated that Ad-REIC treatment activated c-Jun N-terminal kinase (JNK) in NSCLC cell lines, indicating the induction of ER stress with GRP78/BiP (GRP78) up-regulation and resulting in apoptosis. A single intratumoral injection of Ad-REIC significantly inhibited the tumorigenic growth of A549 cells in vivo. As predictive factors of sensitivity for Ad-REIC treatment in NSCLC, we examined the expression status of GRP78 and coxsackievirus and adenovirus receptor (CAR). We found that the combination of the GRP78 and CAR expressional statuses may be used as a predictive factor for Ad-REIC sensitivity in NSCLC cells. CONCLUSION: Ad-REIC induced JNK activation and subsequent apoptosis in NSCLC cells. Our study indicated that Ad-REIC has therapeutic potential against NSCLC and that the expression statuses of GRP78 and CAR may predict a potential therapeutic benefit of Ad-REIC.


Assuntos
Adenocarcinoma/patologia , Adenoviridae/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Adaptadoras de Transdução de Sinal , Adenocarcinoma/genética , Adenocarcinoma/terapia , Animais , Apoptose , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Proliferação de Células , Quimiocinas , Chaperona BiP do Retículo Endoplasmático , Feminino , Citometria de Fluxo , Vetores Genéticos/administração & dosagem , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Oncol Rep ; 31(3): 1089-95, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24398705

RESUMO

Gene expression systems with various promoters, including the cytomegalovirus (CMV) promoter, have been developed to increase the gene expression in a variety of normal and cancer cells. In particular, in the clinical trials of cancer gene therapy, a more efficient and robust gene expression system is required to achieve sufficient therapeutic outcomes. By inserting the triple translational enhancer sequences of human telomerase reverse transcriptase (hTERT), Simian virus 40 (SV40) and CMV downstream of the sequence of the BGH polyA, we were able to develop a novel gene expression system that significantly enhances the expression of the genes of interest. We termed this novel gene expression cassette the super gene expression (SGE) system, and herein verify the utility of the SGE cassette for a replication-deficient adenoviral vector. We newly developed an adenoviral vector expressing the tumor suppressor, reduced expression in immortalized cells (REIC)/Dickkopf-3 (Dkk-3), based on the CMV promoter-driven SGE system (Ad-SGE-REIC) and compared the therapeutic utility of Ad-SGE-REIC with that of the conventional adenoviral vectors (Ad-CMV-REIC or Ad-CAG-REIC). The results demonstrated that the CMV promoter-SGE system allows for more potent gene expression, and that the Ad-SGE-REIC is superior to conventional adenoviral systems in terms of the REIC protein expression and therapeutic effects. Since the SGE cassette can be applied for the expression of various therapeutic genes using various vector systems, we believe that this novel system will become an innovative tool in the field of gene expression and gene therapy.


Assuntos
Adenoviridae/genética , Terapia Genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias/terapia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Apoptose , Quimiocinas , Feminino , Expressão Gênica , Vetores Genéticos , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Carga Tumoral
11.
Int J Mol Med ; 32(4): 938-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23934084

RESUMO

The receptor for advanced glycation end products (RAGE) is a multi-ligand cell surface receptor and a member of the immunoglobulin superfamily. RAGE is involved in a wide range of inflammatory, degenerative and hyper-proliferative disorders which span over different organs by engaging diverse ligands, including advanced glycation end products, S100 family proteins, high-mobility group protein B1 (HMGB1) and amyloid ß. We previously demonstrated that the cytoplasmic domain of RAGE is phosphorylated upon the binding of ligands, enabling the recruitment of two distinct pairs of adaptor proteins, Toll-interleukin 1 receptor domain-containing adaptor protein (TIRAP) and myeloid differentiation protein 88 (MyD88). This engagement allows the activation of downstream effector molecules, and thereby mediates a wide variety of cellular processes, such as inflammatory responses, apoptotic cell death, migration and cell growth. Therefore, inhibition of the binding of TIRAP to RAGE may abrogate intracellular signaling from ligand-activated RAGE. In the present study, we developed inhibitor peptides for RAGE signaling (RAGE-I) by mimicking the phosphorylatable cytosolic domain of RAGE. RAGE-I was efficiently delivered into the cells by polyethylenimine (PEI) cationization. We demonstrated that RAGE-I specifically bound to TIRAP and abrogated the activation of Cdc42 induced by ligand-activated RAGE. Furthermore, we were able to reduce neuronal cell death induced by an excess amount of S100B and to inhibit the migration and invasion of glioma cells in vitro. Our results indicate that RAGE-I provides a powerful tool for therapeutics to block RAGE-mediated multiple signaling.


Assuntos
Polietilenoimina/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células , Células HEK293 , Humanos , Ligantes , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Peptídeos/metabolismo , Fosforilação , Receptor para Produtos Finais de Glicação Avançada , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
12.
Mol Biol Cell ; 24(18): 2772-84, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23885119

RESUMO

Mutations in PTEN-induced putative kinase 1 (PINK1) or parkin cause autosomal recessive forms of Parkinson's disease. Recent work suggests that loss of mitochondrial membrane potential stabilizes PINK1 and that accumulated PINK1 recruits parkin from the cytoplasm to mitochondria for elimination of depolarized mitochondria, which is known as mitophagy. In this study, we find that PINK1 forms a complex with sterile α and TIR motif containing 1 (SARM1) and tumor necrosis factor receptor-associated factor 6 (TRAF6), which is important for import of PINK1 in the outer membrane and stabilization of PINK1 on depolarized mitochondria. SARM1, which is known to be an adaptor protein for Toll-like receptor, binds to PINK1 and promotes TRAF6-mediated lysine 63 chain ubiquitination of PINK1 at lysine 433. Down-regulation of SARM1 and TRAF6 abrogates accumulation of PINK1, followed by recruitment of parkin to damaged mitochondria. Some pathogenic mutations of PINK1 reduce the complex formation and ubiquitination. These results indicate that association of PINK1 with SARM1 and TRAF6 is an important step for mitophagy.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Proteínas do Domínio Armadillo/química , Proteínas do Citoesqueleto/química , Células HEK293 , Células HeLa , Humanos , Lisina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Ligação Proteica , Estabilidade Proteica , Transporte Proteico , Receptores de Superfície Celular/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
13.
Bioorg Med Chem ; 21(8): 2319-2332, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23490155

RESUMO

In the continuing study directed toward the development of peroxisome proliferator-activated receptor gamma (hPPARγ) agonist, we attempted to improve the water solubility of our previously developed hPPARγ-selective agonist 3, which is insufficiently soluble for practical use, by employing two strategies: introducing substituents to reduce its molecular planarity and decreasing its hydrophobicity via replacement of the adamantyl group with a heteroaromatic ring. The first approach proved ineffective, but the second was productive. Here, we report the design and synthesis of a series of α-benzyl phenylpropanoic acid-type hPPARγ partial agonists with improved aqueous solubility. Among them, we selected (R)-7j, which activates hPPARγ to the extent of about 65% of the maximum observed with a full agonist, for further evaluation. The ligand-binding mode and the reason for the partial-agonistic activity are discussed based on X-ray-determined structure of the complex of hPPARγ ligand-binding domain (LBD) and (R)-7j with previously reported ligand-LDB structures. Preliminal apoptotic effect of (R)-7j against human scirrhous gastric cancer cell line OCUM-2MD3 is also described.


Assuntos
PPAR gama/agonistas , Fenilpropionatos/química , Fenilpropionatos/farmacologia , Células 3T3-L1 , Animais , Compostos de Benzil/síntese química , Compostos de Benzil/química , Compostos de Benzil/farmacologia , Linhagem Celular , Chlorocebus aethiops , Desenho de Fármacos , Humanos , Camundongos , Modelos Moleculares , PPAR gama/química , Fenilpropionatos/síntese química , Solubilidade , Relação Estrutura-Atividade
14.
Cancer Res ; 73(1): 172-83, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23135911

RESUMO

The calcium-binding proteins S100A8 and S100A9 can dimerize to form calprotectin, the release of which during tissue damage has been implicated in inflammation and metastasis. However, receptor(s) mediating the physiologic and pathophysiologic effects of this damage-associated "danger signal" are uncertain. In this study, searching for candidate calprotectin receptors by affinity isolation-mass spectrometry, we identified the cell surface glycoprotein EMMPRIN/BASIGIN (CD147/BSG). EMMPRIN specifically bound to S100A9 but not S100A8. Induction of cytokines and matrix metalloproteases (MMP) by S100A9 was markedly downregulated in melanoma cells by attenuation of EMMPRIN. We found that EMMPRIN signaling used the TNF receptor-associated factor TRAF2 distinct from the known S100-binding signaling pathway mediated by RAGE (AGER). S100A9 strongly promoted migration when EMMPRIN was highly expressed, independent of RAGE, whereas EMMPRIN blockade suppressed migration by S100A9. Immunohistologic analysis of melanomas revealed that EMMPRIN was expressed at both the invasive edge of lesions and the adjacent epidermis, where S100A9 was also strongly expressed. In epidermal-specific transgenic mice, tail vein-injected melanoma accumulated in skin expressing S100A9 but not S100A8. Together, our results establish EMMPRIN as a receptor for S100A9 and suggest the therapeutic use in targeting S100A9-EMMPRIN interactions.


Assuntos
Basigina/metabolismo , Calgranulina B/metabolismo , Melanoma/metabolismo , Invasividade Neoplásica , Animais , Linhagem Celular Tumoral , Cromatografia Líquida , Humanos , Imuno-Histoquímica , Imunoprecipitação , Ligantes , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Oncol Rep ; 29(3): 1073-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23254359

RESUMO

Cellular migration is a fundamental process linked to cancer metastasis. Growing evidence indicates that the receptor for advanced glycation end products (RAGE) plays a pivotal role in this process. With regard to downstream signal transducers of RAGE, diaphanous-1 and activated small guanine nucleotide triphosphatases, Rac1 and Cdc42, have been identified. To obtain precise insight into the direct downstream signaling mechanism of RAGE, we screened for proteins interacting with the cytoplasmic domain of RAGE employing an immunoprecipitation-liquid chromatography coupled with an electrospray tandem mass spectrometry system. In the present study, we found that the cytoplasmic domain of RAGE interacted with an atypical DOCK180-related guanine nucleotide exchange factor, dedicator of cytokinesis protein 7 (DOCK7). DOCK7 bound to the RAGE cytoplasmic domain and transduced a signal to Cdc42, resulting in the formation of abundant highly branched filopodia-like protrusions, dendritic pseudopodia. Blocking of the function of DOCK7 greatly abrogated the formation of dendritic pseudopodia and suppressed cellular migration. These results indicate that DOCK7 functions as an essential and downstream regulator of RAGE-mediated cellular migration through the formation of dendritic pseudopodia.


Assuntos
Dendritos/metabolismo , Proteínas Ativadoras de GTPase/fisiologia , Pseudópodes/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Ativação Enzimática , Glioblastoma , Fatores de Troca do Nucleotídeo Guanina , Células HEK293 , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptor para Produtos Finais de Glicação Avançada/química , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Transdução de Sinais
16.
Oncol Rep ; 28(5): 1645-52, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22941469

RESUMO

The biodistribution and safety of adenoviral vectors encoding the human REIC/Dkk-3 tumor suppressor gene (Ad-REIC) were examined in this preclinical study for in situ prostate cancer gene therapy. First, the in vitro apoptotic effects of Ad-REIC in normal and cancer cells derived from the prostate and liver were examined. Significant apoptotic effects were observed at 100 MOI (multiplicity of infection) in prostate cancer cells (LNCaP, PC3) and hepatoma cells (HEP3B and HEPG2); however, no effects were seen in normal cells. To analyze the safety of intraprostatic Ad-REIC administration, the biodistribution and histology after Ad-REIC injection were evaluated in various organs of normal male C57BL6 mice. In a supporting study, vector dissemination following intravenous injection of Ad-REIC into tail veins was determined. To evaluate whether Ad-REIC was present in the collected tissue specimens, human REIC gene detection was performed using DNA-PCR. Intraprostatic treatment administered at lower doses showed vector biodistribution into the colon, urinary bladder and prostate. At higher doses, vector dissemination was observed in tissues more distant from the prostate, including the lung, thymus, heart, liver and adrenal gland. After intravenous injection of Ad-REIC, dissemination was observed in the liver and spleen. These results indicate that the biodistribution of Ad-REIC is determined by the dose and route of administration. Although acute inflammatory effects were observed in the prostate after intraprostatic administration at higher doses, no abnormal histological findings were noted in the other tissues, including those of intravenously treated mice. Regarding the safety of Ad-REIC administration, no deaths and no signs of toxicity or unusual behavior were observed in the mice in any treatment group. Based on these preclinical experiments, adenovirus-mediated in situ REIC/Dkk-3 gene therapy is considered to be safe for use as a treatment for human prostate cancer.


Assuntos
Carcinoma Hepatocelular/terapia , Terapia Genética , Vetores Genéticos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias Hepáticas/terapia , Neoplasias da Próstata/terapia , Proteínas Adaptadoras de Transdução de Sinal , Adenoviridae/genética , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Quimiocinas , Terapia Genética/efeitos adversos , Vetores Genéticos/efeitos adversos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Neoplasias Hepáticas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias da Próstata/genética , Distribuição Tecidual
17.
Oncol Lett ; 3(5): 1149-1153, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22783409

RESUMO

Osteosarcoma is the most common malignant tumor of bone in childhood and adolescence. Despite intensive research for new therapies, the outcome in patients with metastasis remains extremely poor. S100 proteins are involved in the proliferation, cell cycle progression and metastasis of numerous malignant tumors, including osteosarcoma. In the present study, we identified S100A7 as a candidate to promote the migration of osteosarcoma cells. S100A7 promoted the migration and invasion of osteosarcoma cells as assayed in vitro. An in vitro pull-down assay revealed the binding of the recombinant S100A7 protein with its putative receptor, the receptor for advanced glycation end products (RAGE). The downregulation of RAGE by a specific siRNA markedly suppressed the migration and invasion of osteosarcoma cells. Furthermore, the matrix metalloproteinase activity of osteosarcoma cells was enhanced by S100A7 and suppressed by the downregulation of RAGE. These results indicate that S100A7 promotes the migration and invasion of osteosarcoma cells through RAGE. The S100A7-RAGE axis may thus be a new target for preventing the invasion and/or metastasis of osteosarcoma.

18.
Int J Oncol ; 41(2): 559-64, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22665039

RESUMO

Bladder cancer is one of the most common urogenital malignancies. The intravesical instillation of anticancer agents is an attractive strategy to treat a superficial lesion or floating/disseminated cancer cells after transurethral operation. An adenovirus carrying REIC/Dkk-3, a tumor suppressor gene (Ad-REIC), exhibits cancer-specific apoptotic effects in various types of cancer cells. The aim of the present study was to examine the potential of Ad-REIC as a therapeutic agent for bladder cancer. KK47 and RT4 human bladder cancer cells were sensitive to the Ad-REIC treatment for apoptosis induction, but some human bladder cancer cell lines (T24, J82 and TccSup) were resistant. Significant cell growth inhibition was observed when these resistant cancer cell lines were treated with Ad-REIC in a condition of floating cells, which is clinically observed after transurethral operation and becomes a cause of intravesical cancer dissemination. The therapeutic potential of Ad-REIC for the treatment of multidrug-resistant bladder cancer was investigated. The adriamycin-resistant KK47 bladder cancer cells (KK47/ADM), which also present multidrug resistance, showed induction of significant apoptosis following Ad-REIC treatment. The Ad-REIC treatment induced downregulation of P-glycoprotein in KK47/ADM cells and restored the sensitivity to doxorubicin (adriamycin). Ad-REIC suppressed P-glycoprotein expression in a c-Jun-NH2-kinase (JNK)-dependent manner. Therefore, the current study indicated two therapeutic aspects of the Ad-REIC agent against human bladder cancer cells, as an apoptosis inducer/cell growth inhibitor and as a sensitizer of chemotherapeutic agents in multidrug-resistant cancer cells. The intravesical instillation of Ad-REIC could be an attractive therapeutic method in human bladder cancer where the treatment of superficial lesions and floating/disseminated or multidrug-resistant cancer cells is necessary.


Assuntos
Adenoviridae/genética , Genes Supressores de Tumor , Terapia Genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias da Bexiga Urinária/terapia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Antibióticos Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Quimiocinas , Regulação para Baixo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Vetores Genéticos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo
19.
Acta Med Okayama ; 66(1): 7-16, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22358134

RESUMO

The preclinical safety and therapeutic efficacy of adenoviral vectors that express the REIC/Dkk-3 tumor suppressor gene (Ad-REIC) was examined for use in prostate cancer gene therapy. The Ad-human (h) and mouse (m) REIC were previously demonstrated to induce strong anti-cancer effects in vitro and in vivo, and we herein report the results of two in vivo studies. First, intra-tumor Ad-hREIC administration was examined for toxicity and therapeutic effects in a subcutaneous tumor model using the PC3 prostate cancer cell line. Second, intra-prostatic Ad-mREIC administration was tested for toxicity in normal mice. The whole-body and spleen weights, hematological and serum chemistry parameters, and histological evaluation of tissues from throughout the body were analyzed. Both experiments indicated that there was no significant difference in the examined parameters between the Ad-REIC-treated group and the control (PBS- or Ad-LacZ-treated) group. In the in vitro analysis using PC3 cells, a significant apoptotic effect was observed after Ad-hREIC treatment. Confirming this observation, the robust anti-tumor efficacy of Ad-hREIC was demonstrated in the in vivo subcutaneous prostate cancer model. Based on the results of these preclinical experiments, we consider the adenovirus-mediated REIC/Dkk-3 in situ gene therapy to be safe and useful for the clinical treatment of prostate cancer.


Assuntos
Terapia Genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias da Próstata/terapia , Proteínas Adaptadoras de Transdução de Sinal , Adenoviridae/genética , Animais , Linhagem Celular Tumoral , Quimiocinas , Terapia Genética/efeitos adversos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias da Próstata/patologia
20.
J Cancer Res Clin Oncol ; 138(5): 799-809, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22274868

RESUMO

PURPOSE: The REIC (reduced expression in immortalized cells)/Dkk-3 is down-regulated in various cancers and considered to be a tumor suppressor gene. REIC/Dkk-3 mRNA has two isoforms (type-a,b). REIC type-a mRNA has shown to be a major transcript in various cancer cells, and its promoter activity was much stronger than that of type-b. In this study, we examined the methylation status of REIC/Dkk-3 type-a in a broad range of human malignancies. METHODS: We examined REIC/Dkk-3 type-a methylation in breast cancers, non-small-cell lung cancers, gastric cancers, colorectal cancers, and malignant pleural mesotheliomas using a quantitative combined bisulfite restriction analysis assay and bisulfate sequencing. REIC/Dkk-3 type-a and type-b expression was examined using reverse transcriptional PCR. The relationships between the methylation and clinicopathological factors were analyzed. RESULTS: The rate of REIC/Dkk-3 type-a methylation ranged from 26.2 to 50.0% in the various primary tumors that were examined. REIC/Dkk-3 type-a methylation in breast cancer cells was significantly heavier than that in the other cell lines that we tested. REIC/Dkk-3 type-a methylation was inversely correlated with REIC/Dkk-3 type-a expression. There was a correlation between REIC/Dkk-3 type-a and type-b mRNA expression. REIC/Dkk-3 type-a expression was restored in MDA-MB-231 cells using 5-aza-2'-deoxycytidine treatment. We found that estrogen receptor-positive breast cancers were significantly more common among the methylated group than among the non-methylated group. CONCLUSIONS: REIC/Dkk-3 type-a methylation was frequently detected in a broad range of cancers and appeared to play a key role in silencing REIC/Dkk-3 type-a expression in these malignancies.


Assuntos
Metilação de DNA , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias/genética , Proteínas Adaptadoras de Transdução de Sinal , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quimiocinas , Metilação de DNA/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica/fisiologia , Humanos , Masculino , Neoplasias/patologia , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...